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Formation and evolution of cataclysmic variables
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Abstract. This article summarizes the basic facts and ideas concerning the formation and
evolution of cataclysmic variables (CVs). It is shown why the formation of CVs must in-
volve huge losses of mass and orbital angular momentum, very likely via a common en-
velope evolution. A brief discussion of the principles of the long-term evolution of semi-
detached binaries follows. Finally, a brief sketch of CV evolution is given.
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1. Introduction

Cataclysmic variables (CVs) are short-period
semi-detached binary systems in which a white
dwarf (WD) primary accretes matter from a
low-mass companion star (Warner 1995). CVs
are intrinsically variable on a wide range of
time scales (from seconds to & 106 yr) and with
a huge range of amplitudes (of up to 106 and
possibly even more). The rich phenomenology
of CV variability which includes, among other
things, phenomena like flickering, dwarf nova
and classical nova outbursts, can to a large ex-
tent be understood as either immediate or long-
term consequences of the mass transfer pro-
cess. Interesting as all these phenomena are,
they are of no particular interest here. Rather,
in the following I shall concentrate on the evo-
lutionary aspects, i.e. on the formation and
evolution of CVs. Readers who are mainly in-
terested in CVs as variable stars should instead
turn to the monographs by Warner (1995) or
Hellier (2002).
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2. Very basic facts about CVs and
stellar evolution

2.1. Generic properties of CVs

From the perspective of stellar evolution, a CV
is a semi-detached binary in which a WD pri-
mary of mass M1 accretes from a low-mass
secondary star of mass M2 which fills its crit-
ical Roche lobe. From Roche geometry it fol-
lows that the secondary’s radius can be written
as R2 = a f2(q). Here a is the orbital separation,
q = M1/M2 the mass ratio, and f2 the fractional
Roche radius of the donor star. For typical val-
ues of q found in CVs, i.e. 1 . q . 10, Eqs.(2)
or (3), given below, yield 0.2 . f2 . 0.4.

In principle, the mass of the WD compo-
nent can be anywhere between the lowest pos-
sible value resulting from stellar evolution (∼
0.15M�) and the Chandrasekhar mass MCH ≈
1.4M�. Observed masses are mostly in the
range 0.5M� . M1 . 1M�. As to the mass
distribution there are reasons to believe that in-
trinsically it is not unlike that of single WDs
which have a mean mass of < MWD >≈ 0.6M�.
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From the observed mass transfer rates one
can infer that mass transfer in CVs is sta-
ble. This, in turn, requires that the mass of
the donor is typically less than that of the
WD component, i.e. M2 . M1, or q & 1,
and thus that the donor is a low-mass star.
Observations show that in more than 95% of
all cases, the donor star is on the main sequence
(MS), though not necessarily close to the zero
age main sequence (ZAMS). In rare cases, the
donor star is either a giant, or a WD of very
low-mass (M2 . 0.05M�).

For a later comparison, it is useful to keep
in mind the resulting typical system parameters
of a CV with a MS donor:

– total mass:M = M1 + M2 ≈ M�

– orbital separation: a ≈ few R2 ≈ R�

– orbital period: 80 min . Porb . 10h

– orbital angular momentum:
Jorb = G1/2M1 M2 (M1 + M2)−1/2 a1/2 (1)
≈ J0 = G1/2 M�3/2 R�1/2 .

2.2. Evolution of single and binary stars

In the following, I shall summarize the basic
facts which characterize single star and binary
evolution, and are of relevance in the context
of our considerations. These facts are:

1. Stars grow considerably as they age (by
factors up to & 102). Because this growth is
not strictly monotonic, one can distinguish
distinct evolutionary phases during which
a star grows. These phases are:

– central hydrogen burning, i.e. on the
MS

– for intermediate mass and massive stars
(M & 2.2M�) the post-MS evolution
towards He-ignition including the evo-
lution through the Hertzsprung gap

– for low-mass stars (M . 2.2M�) evolu-
tion on the first giant branch up to the
He-flash

– for low and intermediate mass stars
(M . 10M�) evolution on the asymp-
totic giant branch (AGB)

2. The more massive a star, the faster it
ages. Stars on the main sequence obey a

mass luminosity relation. On the upper MS
(1 M� . M . 10 M�), the luminosity L
scales roughly as L ∝ M3.5. Hence the nu-
clear time scale is τnuc ∝ M/L ∝ M−2.5.
The immediate consequence is that of two
stars with the same age (as in a binary) but
different mass, the more massive star grows
faster, i.e. is the bigger of the two.

3. In a binary system the presence of a com-
panion limits the size up to which a star can
grow (Roche limit) without losing mass to
its companion. The maximum radii corre-
sponding to the Roche limit are the criti-
cal Roche radii R1,R = a f1(q) and R2,R =
a f2(q) for respectively the primary and the
secondary, where f1(q) = f2(1/q), and ac-
cording to Paczyński (1971) and Eggleton
(1983) for 1 6 q . 10

f2(q) ≈ 0.462 (1 + q)−1/3, q & 1.25 (2)
f1(q) ≈ 0.38 + 0.2 log q ≈ q0.45 f2(q) . (3)

As a consequence, stellar evolution in a
binary of not too large an orbital separa-
tion a results sooner or later in the for-
mation of a so-called semi-detached bi-
nary in which the more massive component
reaches its Roche limit first and starts trans-
ferring mass to its companion.

2.3. Prerequisites for white dwarf
formation

WDs are the end product of the evolution
of stars of low and intermediate initial mass.
Thereby the chemical composition of a WD re-
flects the evolutionary state of the star when
it loses its hydrogen-rich envelope. Depending
on when this happens during the evolution, the
result is either a WD consisting mainly of he-
lium (He-WD), of carbon and oxygen (CO-
WD), or oxygen and neon (ONe-WD).

– He-WDs result from the complete loss of
the hydrogen-rich envelope of a low-mass
star (with an initial mass Mi . 2.2M�)
on the first giant branch, i.e. before reach-
ing the He-flash. Accordingly, the mass
of He-WDs is in the range 0.15M� .
MHe−WD 6 MHe−Fl, where MHe−Fl ≈ 0.45 −
0.50M� is the mass of the He core at



Ritter: Cataclysmic variables 851

the onset of the He-flash. Because wind
mass loss of single stars on the first gi-
ant branch is not strong enough for com-
plete envelope loss isolated He-WDs are
not formed. However, they can result from
mass transfer in a close binary (see e.g.
Kippenhahn, Kohl & Weigert 1967).

– CO-WDs result from the complete loss
of the hydrogen-rich envelope of interme-
diate mass stars on the AGB, i.e. before
the onset of carbon burning. For single
stars, this happens if the initial mass is
Mi . 6 − 8M�. In binary stars, this can
happen for initial masses up to ∼ 10M�.
Accordingly, the resulting WD masses are
in the range MHe−Fl . MCO−WD 6 MC−ign,
where MC−ign ≈ 1.1M� is the core mass at
the onset of carbon ignition.

– ONe-WDs originate from stars which un-
dergo off-center carbon ignition and sub-
sequent envelope loss during the so-called
super-AGB phase. For single stars this is
possible for initial masses in the range
9M� . Mi . 10M�, whereas in bina-
ries the mass range is 9M� . Mi .
12M� (see e.g. Gil-Pons & Garcı́a-Berro
2001; Gil-Pons et al. 2003). The resulting
WDs have masses in the range 1.1M� .
MONe−WD . 1.38M�.

In the context of our considerations, one of
the most important properties of stars which
have a degenerate core of mass Mc is that
they obey by and large a core mass-luminosity
relation L(Mc), and to the extent that these
stars have a sufficiently massive hydrogen-rich
envelope and thus are close to the Hayashi-
line, also a core mass-radius relation R(Mc)
(see e.g. Paczyński 1970; Kippenhahn 1981;
Joss, Rappaport & Lewis 1987). This relation
shows that the radius of such a star is a steeply
increasing function of core mass and that, in
particular, AGB stars and stars on the super-
AGB are very large, with radii of up to ∼
103R�. In other words: the formation of a WD
requires a lot of space, the more massive the
WD the more space. This is not a problem for
single stars. But in a binary, as a consequence
of the Roche limit, the orbital separation a sets

an upper limit to the mass of the WD that can
be formed: MWD . R−1 (a f1(q)).

2.4. Single star evolution versus binary
star evolution

The task of calculating the structure and evolu-
tion of a single star consists in solving a well-
known set of differential equations with appro-
priate boundary conditions and initial values
(see e.g. Kippenhahn & Weigert 1990).

For calculating the evolution of a binary
system (or of one of its components), the task
is, in principle, the same as for single stars. The
difference is that in a binary, one has an addi-
tional boundary condition which derives from
the presence of the companion star, i.e. from
the Roche limit.

Consider for simplicity a system consisting
of a “real “ star, say the primary, and a point
mass secondary. The simplest boundary condi-
tion that one could impose in this case is that
R1 6 a f1(q). A more realistic approach would
take into account that the surface of a star is not
arbitrarily sharp, but rather is characterized by
a finite scale height H � R over which pres-
sure, density etc. drop off, by expressing the
mass loss rate −Ṁ1 as an explicit function of
binary and stellar parameters (see e.g. Ritter
1988). We find that −Ṁ1 is a steeply increas-
ing function of (R1 − R1,R)/H and the primary
suffers significant mass loss as R1 → R1,R.

The real problem when dealing with mass
transfer consists of answering two questions:
1.) Where does the mass lost from the donor
go? and 2.) How much angular momentum
does it take with it? On the formal level, this
can be dealt with as follows: let us assume that
a fraction η of the transferred mass is accreted
by the secondary, i.e.

Ṁ2 = −η Ṁ1 . (4)

Accordingly, the mass loss rate from the sys-
tem is Ṁ = (1 − η) Ṁ1. The angular momen-
tum loss rate associated with this mass loss can
be written as

J̇orb = ν Ṁ Jorb/M , (5)

where ν is a dimensionless factor measuring
the angular momentum leaving the system.
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What is known about the two parameters η
and ν? In general, not more than 1.) 0 6 η 6 1,
and 2.) ν > 0. Otherwise, η and ν are (al-
most) free functions of the problem. Therefore,
calculating binary evolution involves (at least)
two almost free functions. And the art of per-
forming such calculations very often consists
of making creative use of this freedom!

2.5. Generic properties of CV
progenitors

We are now in a position to define the neces-
sary criteria which a binary consisting initially
of two ZAMS stars of mass M1,i and M2,i has
to meet in order to later become a CV which, at
the onset of mass transfer, i.e. at the beginning
of its life as a CV, consists of a WD of mass
MWD and a donor star of mass M2.

1. M1,i must have sufficient mass to allow for
the formation of a WD of mass MWD.
In theoretical calculations of the evolution
of single stars with a fixed set of physi-
cal assumptions (such as initial chemical
composition, equation of state, opacities,
nuclear reaction rates, convection theory,
wind mass loss, etc.), there is a one to
one relation between the initial mass Mi
and the mass Mf of the white dwarf pro-
duced. This relation is known as the ini-
tial mass-final mass relation, i.e. MWD =
Mf(Mi). Within the observational uncer-
tainties, there is also ample observational
evidence for this Mi-Mf-relation (see e.g.
Salaris et al. 2008, and references therein).
In binary evolution, things are different: be-
cause mass transfer sets a premature end
to the donor’s nuclear evolution, the mass
of the resulting white dwarf is smaller than
what single star evolution of the primary
would yield, i.e. MWD < Mf(M1,i). In other
words: for the formation of a WD of mass
MWD the necessary condition is M1,i >
Mf
−1(MWD).

2. Because of the core mass-radius relation
R(Mc) which holds for the giant primary
when it reaches its Roche limit, the ini-
tial separation of the binary must be ai =
R(MWD)/ f1(qi), where qi is the initial mass

ratio. For this estimate of ai, we have im-
plicitely assumed that after the onset of (the
first) mass transfer MWD = const.

3. Finally for the secondary’s mass we as-
sume M2,i = M2. A justification for this
will be given below.

Now, let us take typical parameters for a CV,
say MWD ≈ 1M� and M2 . 1M�, in order to
see where this leads us: with MWD ≈ 1M� it
follows from the Mi-Mf-relation that M1,i &
5M�, hence Mi & 6M�, and from the core
mass-radius relation R(MWD) ≈ 103R�, and
with f1(qi) ≈ 0.5, ai ∼ 2 103R�. Therefore, the
initial orbital angular momentum of the binary
is

Jorb,i = J0

(
M1,i

M�

) (
M2,i

M�

) (Mi

M�

)−1/2( ai

R�

)1/2

(6)

≈ 102 J0 .

Comparing now the total mass and orbital an-
gular momentum of a CV (cf. Sect. 2.1) with
the corresponding values of its progenitor sys-
tem we find that Mi/MCV ≈ 5 − 10 and
Jorb,i/JCV ≈ 102. In other words: the formation
of a CV invokes a binary evolution in which the
progenitor system has to lose ∼ 80% − 90% of
its initial mass and up to ∼ 99% of its initial
orbital angular momentum (Ritter 1976), and
that after the onset of mass transfer from the
primary.

3. Mass transfer and its
consequences

Since the primary of a CV progenitor does
not stop growing when approaching its Roche
limit, onset of mass transfer is unavoidable.
Because the subsequent formation of a CV in-
volves huge losses of mass and orbital angular
momentum from the binary system, it is nec-
essary to examine the consequences of mass
transfer for the ensuing evolution in more de-
tail.

3.1. Stability of mass transfer

A detailed discussion of the stability of mass
transfer is rather complex and beyond the
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scope of this article. The reader is referred to
e.g. Ritter (1988) or Ritter (1996). Here I shall
keep the presentation as simple as possible.

Let us assume for the moment that the pri-
mary star has a sharp outer boundary and that
it has just reached its Roche limit, i.e. that
R1 = R1,R. What happens if at that moment,
which we denote by t0, a small amount of mass
δm is taken away from the primary and trans-
ferred to the secondary, i.e. if M1 → M1 − δm
and M2 → M2 + δm? As a consequence of
this small mass transfer, not only the mass ra-
tio q and the critical Roche radii R1,R and R2,R
will change but also the stellar radii R1 and R2.
Let us for the moment treat the secondary as a
point mass. Thus we have to deal only with the
radii R1(t > t0) and R1,R(t > t0). Thereby, three
different situations can arise:

1. R1(t > t0) < R1,R(t > t0): In this case mass
transfer is stable, because after a small
mass transfer δm the donor underfills its
critical Roche volume and mass transfer
stops.

2. R1(t > t0) > R1,R(t > t0): In this case mass
transfer is unstable, because if R1(t > t0) −
R1,R(t > t0) > 0 even more mass flows over.

3. R1(t > t0) = R1,R(t > t0): In this case mass
transfer is marginally stable.

In order to decide which of the three above
cases arises, we must know how R1 and R1,R re-
act to mass transfer. For all practical purposes,
R1,R adjusts instantaneously (actually on the
orbital time scale) to changes in M1, M2 and
Jorb. Although, in principle, calculating R1,R is
straighforward, it is still necessary to precisely
specify where the transferred mass goes and, if
the system loses mass, how much angular mo-
mentum it takes with it, i.e. one has to specify
the parameters η and ν. The change of R1,R is
conveniently expressed in terms of the mass ra-
dius exponent

ζR,1 =

(
∂ln R1,R

∂ln M1

)

∗
, (7)

where the subscript ∗ is a reminder that for its
calculation η and ν need to be specified.

On the other hand, the reaction of the
donor’s radius R1 to mass loss is more compli-
cated: besides hydrostatic equilibrium which

readjusts on the orbital time scale, mass loss
disturbs also the thermal equilibrium of a star.
Therefore, its reaction depends on the ratio of
the mass loss time scale τM to the time scale
τth on which the star can readjust to thermal
equilibrium. If τM/τth � 1 the star reacts es-
sentially adiabatically, and the radius change is
expressed in terms of the adiabatic mass radius
exponent

ζad,1 =

(
∂ln R1

∂ln M1

)

ad
. (8)

If, on the other hand, mass loss is very slow, i.e.
τM/τth � 1, the star has time to adjust to near
thermal equilibrium, in which case the radius
change is expressed by the thermal equilibrium
mass radius exponent

ζth,1 =

(
∂ln R1

∂ln M1

)

th
. (9)

Accordingly, there are two criteria for the sta-
blity of mass transfer:

1. Mass transfer is adiabatically stable if

ζad,1 − ζR,1 > 0 (10)

2. Mass transfer is thermally stable if

ζth,1 − ζR,1 > 0 . (11)

What does all that mean for the CV progen-
itor system at the onset of mass transfer? In
order to answer we must know the values of
ζR,1, ζad,1, and ζth,1. Because M1,i > M2,i one
invariably finds that ζR,1 > 0 even in the most
favourable case where no orbital angular mo-
mentum is lost. The values of ζad,1, and ζth,1, on
the other hand, depend on the internal structure
of the star in question. In our case the donor
is a star with a degenerate core and a deep
outer convective envelope. For such stars one
typically finds −1/3 . ζad . 0 and ζth . 0
(Hjellming & Webbink 1987). Taken together
this means that mass transfer in such a system
is adiabatically and thermally unstable. And as
a consequence of the adiabatic instability, mass
transfer quickly accelerates to the point where
the mass transfer rate reaches values of the or-
der of −Ṁ1,ad ∼ M1/τconv ∼ M�yr−1, where
τconv ∼ yr is the convective turnover time scale
(Paczyński & Sienkiewicz 1972).
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3.2. Fast accretion onto a main
sequence star

So far we have treated the MS secondary
as a point mass. Whereas before the on-
set of mass transfer this is an adequate
approximation, this is not always true af-
terwards. Numerical calculations (see e.g.
Kippenhahn & Meyer-Hofmeister 1977;
Neo et al. 1977) show that the low-mass
secondary, exposed to the prodigious mass
inflow rates associated with the adiabatic
mass transfer instability, starts expanding
rapidly to giant dimensions. The reason for
this behaviour is that the thermal time scale of
the accreted envelope around the secondary is
much longer than the mass accumulation time.
As a consequence, the accreted matter cannot
cool efficiently and, therefore, forms a deep
and very extended convective envelope of high
entropy material around the secondary. The
star thus attains a structure similar to that of
a giant/AGB star which, however, derives its
luminosity mainly from accretion rather than
from nuclear burning.

3.3. Formation of a common envelope

The situation of a CV progenitor at the on-
set of mass transfer can now be characterized
as follows: because mass transfer occurs from
the more massive star, the orbital separation
a as well as the critical Roche radii R1,R and
R2,R shrink. At the same time, the mass losing
donor star has the tendency to expand (nega-
tive ζad and ζth). But forced by dynamical con-
straints to essentially follow R1,R, the donor
must lose mass at rates approaching ∼ M�yr−1.
And the secondary, in turn, exposed to such
enormous accretion rates, reacts by rapid ex-
pansion. The consequence of all this is that
within a very short time after the onset of mass
transfer, the system evolves into deep contact.
An attempt to model this very complicated
process has been made by Webbink (1979).
Accordingly, the immediate result of this evo-
lution can then be roughly chracterized as fol-
lows: A binary system consisting of the pri-
mary’s core (the future WD) of mass Mc and
the original secondary of mass M2,i finds itself

deeply immersed in a common envelope (CE)
of mass MCE = M1,i − Mc and a size which
must be of the order of or even larger than the
radius given by the core mass-radius relation,
i.e. RCE & R(Mc).

4. Common envelope evolution and
CV formation

Common envelope evolution is the name of a
generic process which arises as a consequence
of dynamical time scale mass transfer, and as
a result of which a detached short-period bi-
nary is formed, in which one of its compo-
nents is the core of the former primary (in
our case a pre-WD). Because of its importance
for the formation of all sorts of compact bi-
naries, the subject has generated a vast liter-
ature. For lack of space, I cannot give a de-
tailed review here. Rather, I shall concentrate
on sketching a few key aspects of this process.
For details, I refer the reader to recent reviews
by Taam & Sandquist (2000) and Webbink
(2008).

4.1. The Darwin instability

Let us now consider the following idealized
situation: a binary consisting of the original
primary’s core of mass Mc and the secondary
of mass M2 with orbital separation a and or-
bital frequency ω∗∗ is embeded in an envelope
of mass ME, radius RE, moment of inertia IE
which is in solid body rotation with an angu-
lar frequency ΩE. If ω∗∗ > ΩE tidal interac-
tion and friction between the binary and en-
velope lead to energy dissipation and angular
momentum transport from the binary to the
envelope with J̇∗∗ = −J̇E < 0. As a conse-
quence, the envelope, initially rotating slower
than the binary, is spun up. But according to
Kepler’s third law also the binary’s orbital fre-
quency increases, due to the loss of orbital an-
gular momentum. The question of interest is
thus whether through this spin-up the differ-
ence ω∗∗ −ΩE increases or decreases.

If ω∗∗ − ΩE > 0 and ω̇∗∗ − Ω̇E < 0 the
envelope is synchronized, i.e. ΩE → ω∗∗.

If, on the other hand, ω∗∗ − ΩE > 0 and
ω̇∗∗ − Ω̇E > 0, runaway friction results, and the
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binary spirals in. The condition for this to hap-
pen is easily derived: the binary’s orbital angu-
lar momentum is

J∗∗ = G2/3 McM2

(Mc + M2)1/3 ω∗∗
−1/3 (12)

= I∗∗ω∗∗ , (13)

where

I∗∗ =
McM2

Mc + M2
a2 (14)

is the orbital moment of inertia. The envelope’s
spin angular momentum is

JE = IE ΩE . (15)

With (12) and (15) angular momentum conser-
vation, i.e. J̇∗∗ + J̇E = 0, yields

ω̇∗∗ − Ω̇E = ω̇∗∗

(
1 − 1

3
I∗∗
IE

)
. (16)

From (16) we see that the envelope can be syn-
chronized only if IE < 1/3I∗∗. If, on the other
hand,

IE >
1
3

I∗∗ (17)

the envelope cannot be synchronized and
spiral-in of the binary is unavoidable. The im-
possibility of synchronizing the envelope re-
sults from a variant of an instability which has
actually been known for a long time: discov-
ered by Darwin (1879), though in a different
context, it is commonly called Darwin insta-
bility.

Whether the Darwin instability is of rele-
vance for our problem, i.e. whether the crite-
rion (17) is met with the formation of a CE
after the onset of adiabatically unstable mass
transfer, needs of course first to be checked.
Since adequate model calculations of the for-
mation of a CE are still not feasible, simple
estimates must do. And these indicate indeed
that for typical parameters of CV progenitor
systems the forming CE systems are Darwin
unstable.

4.2. Common envelope evolution

Despite decades of heroic efforts to model
common envelope evolution (for a review see
e.g. Taam & Sandquist 2000), to this day it has
not yet been possible to follow such an evolu-
tion from its beginning to its end with really
adequate numerical computations. Therefore,
it is still not possible for a given set of ini-
tial parameters to reliably predict the outcome
of common envelope evolution. We expect that
in many, but not necessarily all cases the fric-
tional energy release will unbind the CE and
leave a close binary consisting of the former
primary’s degenerate core and the secondary.

Clearly, the ejection of the CE requires the
release of the envelope’s binding energy in a
sufficiently short time, i.e. that the time scale of
the spiral-in is short. However, there are limits
to how short the spiral-in can be. From sim-
plified one-dimensional hydrostatic model cal-
culations, Meyer & Meyer-Hofmeister (1979)
found that there is a negative feedback between
the frictional energy release and the resulting
radiation pressure. An estimate of the duration
of the spiral-in is obtained from the argument
that because of this feedback the frictional lu-
minosity Lfrict cannot exceed the Eddington lu-
minosity

LEdd =
4 πG cM

κes
(18)

by much. Here κes is the electron scatter-
ing opacity. The evolution of the binary with
masses Mc and M2 from an initial separation
ai to a final separation af � ai releases the or-
bital binding energy

∆EB ≈ G Mc M2

2af
. (19)

This yields a rough estimate of the spiraling-in
time scale

τCE ≈ ∆EB

Lfrict
&

∆EB

LEdd
(20)

& 400yr
Mc M2

(Mc + M2) M�

af

R�
. (21)

Thus for the typical parameters of a CV (see
Sect.2.1) τCE is very short, so short indeed that
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the secondary star has no time to accrete a sig-
nificant amount of mass during the CE phase
(Hjellming & Taam 1991). This is the a pos-
teriori justification for our assumption in Sect.
2.5 that M2,i = M2,f .

Because of the short duration of CE evolu-
tion, the chances of observing a binary system
during this phase are extremely small, apart
from the fact that it is not even quite clear what
to look for. Worse, the spiraling-in binary is
hidden from view as long as it is inside the
CE. In view of our limited theoretical under-
standing of CE evolution in general and the
ejection of the CE in particular, and the fact
that this process is virtually unobservable, one
has to ask why we can be sure that CE evolu-
tion really happens as described above. Beyond
all the uncertainties, the concept of CE evolu-
tion does make at least one prediction that is
testable: at the end of the CE process, if the
envelope is ejected, we expect a binary inside
the now more or less transparent envelope. And
in this binary the primary’s degenerate core
emerges as a very hot pre-WD which, in turn,
ionizes the surrounding gas, thereby transform-
ing the ejected CE into a planetary nebula. The
concept of CE evolution thus implies the ex-
istence of planetary nebulae with short-period
binary central stars. And indeed, such objects
are observed: currently we know of ∼ 20
short-period binary central stars of planetary
nebulae (see e.g. De Marco, Hillwig & Smith
2008; Ritter & Kolb 2003).

4.3. Formal treatment of the CE phase

CE evolution, if it ends with the ejection of
the CE, transforms a binary with initial param-
eters (M1,i,M2,i, ai) to one with final param-
eters (M1,f , M2,f , af). With the current theory
it is not possible to precisely link these two
sets of parameters. Therefore, in evolutionary
studies and population synthesis calculations
of compact binaries (e.g. de Kool 1990, 1992;
de Kool & Ritter 1993; Politano 1996, 2004,
2007), CE evolution is usually dealt with by
means of a simple estimate (Webbink 1984)
which derives from the assumption that a frac-
tion αCE . 1 of the binary’s binding energy

which is released in the spiraling-in process,
∆EB,∗∗, is used to unbind the CE.

Using M1,f = Mc,i = Mc, M2,f = M2,i = M2
we have

∆EB,∗∗ =
G Mc M2

2

(
1
ai
− 1

af

)
. (22)

On the other hand, the binding energy of the
CE can be written as

EB,CE = −G M1,i MCE

λR1,i
, (23)

where MCE = M1,i − Mc is the mass and
R1,i = ai f1(qi) the radius of the CE, and λ
a dimensionless factor which can be deter-
mined from stellar structure calculations pro-
vided one knows exactly where the mass cut
between core and envelope is. Unfortunately it
turns out that λ depends rather sensitively on
this (Tauris & Dewi 2001). The CE criterion,
namely that

EB,CE = α∆EB,∗∗ (24)

is then equvalent to

af = ai

{
2 M1,i MCE

αCE λ Mc M2 f1(qi)
− M1,i

Mc

}−1

. (25)

Eq. (25) provides the formal link between the
pre-CE and the post-CE binary parameters. As
it can be seen from Eq. (25) when dealing with
CE evolution in this way one introduces es-
sentially one free parameter, namely αCE λ (per
CE phase). Since we do not have any a priori
knowledge about αCE and since also λ is not re-
ally well known, the degree of uncertainty in-
troduced via αCE λ is quite considerable.

Several recent investgations of binary evo-
lution involving CE evolution have come to
the conclusion that the energy criterion (24)
is not always adequate and that, in addition to
the orbital binding energy, possibly also other
sources of energy such as the ionization energy
have to be taken into account. For a compre-
hensive discussion of this point see Webbink
(2008).



Ritter: Cataclysmic variables 857

4.4. Evolution of post-common envelope
binaries

The ejection of the CE leaves a detached short-
period binary inside a planetary nebula, which
is excited by the hot pre-WD component. Once
the planetary nebula disappears, either because
it dissolves or because of lack of ionizing ra-
diation from the pre-WD, what remains is a
binary consisting of a WD and an essentially
unevolved companion. And because the life-
time of a typical planetary nebula of ∼ 104 yr is
much shorter than the lifetime of a typical post-
CE binary in the detached phase, the intrinsic
number of detached post-CE systems lacking a
visible planetary nebula must be vastly larger
than that of post-CE systems with a planetary
nebula. And although such systems are intrin-
sically rather faint (both the WD and its low-
mass companion are faint), because of their
rather high space density, quite a number of
such systems are known (currently & 50, see
Ritter & Kolb 2003, for a compilation). They
are collectively refrerred to as precataclysmic
binaries, hereafter pre-CVs.

In the following, we need to discuss two
questions: 1) how does a detached pre-CV be-
come semi-detached, i.e. a CV, and 2) whether
with the onset of mass transfer all pre-CVs re-
ally become CVs or perhaps follow a totally
different evolutionary path.

Since in a detached system the future donor
star underfills its Roche lobe, mass transfer
can only be initiated if either the donor star
grows (as a consequence of nuclear evolution)
or if the orbital separation shrinks as a con-
sequence of orbital angular momentum loss
(AML). Which of the two possibilities is rele-
vant for a particular binary system depends on
the ratio of the nuclear time scale

τnuc,2 =

(
∂t

∂ ln R2

)

nuc
(26)

on which the star grows to the AML time scale

τJ = −
(

∂t
∂ ln Jorb

)
= −2

(
∂t

∂ ln a

)
(27)

on which the orbital separation a shrinks.
If τJ < 2 τnuc,2 mass transfer is initiated by

AML, otherwise by nuclear evolution. The typ-
ical future donor star of a pre-CV is a low-mass

MS star. Thus τnuc,2 > 109 yr. AML in such bi-
naries results either from the emission of grav-
itational waves (Kraft, Mathews & Greenstein
1962) or from magnetic braking, i.e. a mag-
netically coupled stellar wind from the tidally
locked companion. In typical pre-CV sys-
tems, AML is dominated by magnetic brak-
ing. Unfortunately, for that case there is as yet
no theory which would allow computation of
J̇orb from first principles. Again, simple semi-
empirical estimates (e.g. Verbunt & Zwaan
1981) or simplified theoretical approaches (e.g.
Mestel & Spruit 1987) must do. For the typ-
ical pre-CV with a low-mass MS compan-
ion, these estimates yield τJ ∼ 108 yr. Thus,
for such systems mass transfer is typically
initiated via AML (see e.g. Ritter 1986;
Schreiber & Gänsicke 2003). But the simple
fact that we do observe a number of long-
period CVs with a giant donor shows that mass
transfer can also be initiated by nuclear evolu-
tion of the future donor star. However, the frac-
tion of pre-CV systems ending up with a gi-
ant donor is small and, unfortunately, strongly
model-dependent (de Kool 1992).

When the secondary reaches its Roche
limit and mass transfer sets in, stability of mass
transfer becomes again an issue. Whether mass
transfer is stable depends on whether the cri-
teria which we had derived in Sect. 3.1, but
now applied to the secondary star, are fulfilled.
Why is this important? Observations and theo-
retical arguments show that in the vast majority
of CVs mass transfer is thermally and adiabat-
ically stable. In other words: only those pre-
CVs for which ζad,2−ζR,2 > 0 and ζth,2−ζR,2 > 0
can directly become CVs. What happens to the
rest? That depends mainly on the evolutionary
status of the donor and the binary’s mass ratio.
If we distinguish for simplicity MS stars and
giants as possible donor stars, then the follow-
ing cases can arise:

1. MS donor, mass transfer thermally and
adiabatically stable → short-period CV
(Porb . 0.5 d) with an unevolved donor.

2. MS donor, mass transfer adiabatically
stable but thermally unstable → ther-
mal time scale mass transfer, WD with
stationary hydrogen burning, system
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appears as a supersoft X-ray source
(see e.g. van den Heuvel et al. 1992;
Schenker et al. 2002) → CV with an
artificially evolved MS donor.

3. MS donor, mass transfer adiabatically un-
stable→ very high mass transfer rates, sec-
ond common envelope?, coalescence?

4. giant donor, mass transfer thermally and
adiabatically stable → long-period CV
(Porb & 1 d).

5. giant donor, mass transfer either thermally
or adiabatically unstable→ very high mass
transfer rates, second common envelope?,
formation of an ultrashort-period detached
WD+WD binary?

5. CV evolution

CV evolution is a complex subject. Yet, be-
cause of space constraints, here I can only
present a brief outline of this topic. For read-
ers wishing to learn more about it the reviews
by King (1988) and Ritter (1996) are a good
starting point.

5.1. Mass transfer in semi-detached
binaries

If mass transfer in a binary is thermally and
adiabatically stable, as in the majority of CVs,
no mass transfer occurs, unless some external
force drives it. And in CVs the driving agents
are the same as in pre-CVs (cf. Sect. 4.4),
i.e. AML and nuclear evolution of the donor.
Furthermore, if mass transfer is stable and the
strength of the driving changes only on long
time scales, mass transfer will be essentially
stationary. In that case the donor’s radius R2
and its Roche radius R2,R are equal to within
very few atmospheric scale heights H � R2
(Ritter 1988). Thus, to a very good accuracy
we must have Ṙ2 = Ṙ2,R, or, using R2 = R2,R,

d ln R2

dt
=

d ln R2,R

dt
. (28)

Now, the donor’s radius can change because
of mass loss, nuclear evolution, and thermal
readjustment. As mentioned earlier (Sect. 3.1),
mass loss (if nothing else) drives a star out
of thermal equilibrium. If mass loss were

stopped, the star evolved back towards ther-
mal equilibrium, thereby changing it radius ini-
tially at a relative rate
(
∂ ln R2

∂t

)

th
=

1
τth,2

, (29)

where τth,2 is the thermal time scale. Thus the
rate of change of R2 can be decomposed as fol-
lows:

d ln R2

dt
=

Ṁ2

M2
ζad,2 +

1
τth,2

+
1

τnuc,2
(30)

On the other hand, the donor’s Roche radius
can change because of mass transfer and AML.
With (27) we have

d ln R2,R

dt
=

Ṁ2

M2
ζR,2 − 2

τJ
. (31)

Eqs. (28), (30), and (31) finally yield the mass
transfer rate

− Ṁ2 =
1

ζad,2 − ζR,2

(
1
τth,2

+
1

τnuc,2
+

2
τJ

)
.(32)

If mass transfer is sufficienly slow, such that
the donor remains close to thermal equilib-
rium, its radius changes according to

d ln R2

dt
=

Ṁ2

M2
ζth,2 +

1
τnuc,2

, (33)

and together with (28) and (31) we can write

− Ṁ2 =
1

ζth,2 − ζR,2

(
1

τnuc,2
+

2
τJ

)
. (34)

From what has been said so far, it is easily seen
that for the sign of the mass transfer rate to be
correct, i.e. for −Ṁ2 > 0, the denominator in
(32) and (34) must be positive, i.e. that

ζad,2 − ζR,2 > 0 (35)

and

ζth,2 − ζR,2 > 0 . (36)

With Eqs. (35) and (36) we have thus recovered
the stability criteria for mass transfer. What this
implies is that for mass transfer to be stationary
it must be stable, too.
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5.2. Computing the evolution of a
semi-detached binary

Can we use Eqs. (32) or (34) for calculat-
ing the evolution of a semi-detached binary?
Unfortunately, this is in general not the case.
The virtue of Eqs. (32) or (34) and the reason
why we have derived them here is that they
show clearly how the long-term evolution of
a semi-detached binary works: mass transfer
must be stable and be driven by some mech-
anism. The obvious ones are the growth of the
donor star due to nuclear evolution, or AML,
which shrinks the binary. A less obvious driv-
ing agent is the growth of the donor star as a
consequence of thermal relaxation (cf. (32)).
However, thermal relaxation, itself mainly be-
ing a consequence of mass loss, cannot main-
tain mass transfer for times long compared to
τth without external driving by one of the other
mechanisms.

The reason why we cannot use Eqs. (32)
or (34) for evolutionary computations is that
most of the quantities appearing in these equa-
tions are not explicitly known. In partcular, ζad,
ζth, τnuc, and τth require the knowledge of the
complete internal structure of the donor star,
i.e. nothing less than the whole past history of
the binary system. Worse, even if all that were
known, the above quantities can only be de-
termined numerically. Furthermore, computing
ζR requires specification of ν and η (Eqs. (5)
and (4)). Finally, apart from gravitational radi-
ation, the AML rate is not well known and in
some cases only given as an implicit function
of binary parameters (Mestel & Spruit 1987).
Even more exotic effects such as irradiation of
the donor star or the accretion disc can strongly
affect the quantities appearing in (32) or (34)
(see e.g. Ritter 1996; Büning & Ritter 2004;
Ritter 2008).

Application of Eqs. (32) or (34) for
evolutionary computations is therefore
limited to cases where the donor star can
either be approximated by a particularly
simple stellar model, e.g. by a polytrope
(Rappaport, Joss & Webbink 1982), a bipoly-
trope (e.g. Rappaport, Verbunt & Joss
1983; Kolb & Ritter 1992), or where stel-
lar structure data determined beforehand

from single star evolution can be used
(Webbink, Rappaport & Savonije 1983;
Ritter 1999).

In general, such simplifications are unsatis-
factory. For a more realistic simulation, the full
stellar structure problem must be solved as de-
scribed in Sect. 2.4. Stellar evolution is an ini-
tial value problem. Thus, in order to set up a
simulation of a CV evolution, one has first to
decide at which moment of the evolution to
start the calculation, e.g. at the onset of mass
transfer from the secondary, and then to specify
at least the masses of the components and the
internal structure, i.e. the evolutionary status of
the donor star, but, as the case may be, also the
structure of the accreting WD. Furthermore,
one has to adopt values or prescriptions for ν
and η, and finally to decide what to do about
AML, in particular about magnetic braking,
i.e. which of the various prescriptions avail-
able in the lierature (see e.g. Verbunt & Zwaan
1981; Mestel & Spruit 1987) to use. When ev-
erything is set up calculating the evolution is
in the simplest case just a single star evolution
for the donor star with variable mass where the
mass loss rate is an eigenvalue of the prob-
lem and is determined by the additional outer
boundary condition , e.g. by R2 6 R2,R.

5.3. A sketch of CV evolution

The orbital period Porb is the only physical
quantity which is known with some precision
for a large number of CVs, currently for over
700 objects (Ritter & Kolb 2003). Reliable
masses, on the other hand, are known, if at
all, only for a very small minority of CVs.
Therefore, much of the work on CV evolution
in the past 30 years has concentrated on un-
derstanding the observed period distribution of
CVs. Broadly speaking, this distribution is bi-
modal with ∼ 45% of the objects having peri-
ods in the range 3h . Porb . 16h, another ∼
45% with 80 min . Porb . 3h, and the remain-
ing ∼ 10% with 2h . Porb . 3h. The dearth of
objects in the period interval 2h . Porb . 3h is
known in the literature as the period gap.

The maximum period of ∼ 16h is easily un-
derstood as a consequence of the facts that 1)
the donor is a MS star, 2) the mass of the WD
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is MWD < MCH ≈ 1.4M� and 3) mass transfer
must be stable.

The minimum period of ∼ 80 min, in turn,
is at least qualitatively understood as a conse-
quence of mass transfer from a hydrogen-rich
donor which is mainly driven by gravitational
radiation (Paczyński & Sienkiewicz 1981,
1983; Rappaport, Joss & Webbink 1982).
Because of mass loss, of the order of a few
10−11M�yr−1, the donor star becomes more
and more degenerate when M2 . 0.1M�
and its structure changes from that of a
low-mass MS star to that of a brown dwarf.
Thereby its effective mass radius exponent
ζeff,2 = d ln R2/d ln M2 changes from ∼ 0.8
on the MS to −1/3. Porb is minimal when
ζeff,2 = +1/3. Whether mass transfer near
the period minimum is really driven by
gravitational radiation only is currently under
dispute because of the mismatch between the
corresponding theoretical prediction for the
minimum period of ∼ 70 min and the observed
value of ∼ 77 min (see e.g. Renvoizé et al.
2002; Barker & Kolb 2003, for a discussion).

The period gap is more difficult to ac-
count for. Over the years, a number of dif-
ferent hypotheses have been put forward to
explain it. For lack of space, I cannot re-
view them all here. Rather, I shall concen-
trate on one hypothesis (Spruit & Ritter 1983;
Rappaport, Verbunt & Joss 1983) which, in
my view, still provides the most plausible ex-
planation for what we see, and which is known
in the literature as the disrupted (magnetic)
braking hypothesis. It postulates that, as long
as the donor star has a radiative core, “mag-
netic braking” is effective and CV evolution is
driven by a high AML rate due to “magnetic
braking” and gravitational radiation, but that,
as soon as the donor star becomes fully con-
vective, “magnetic braking” becomes ineffec-
tive, and thus the evolution is driven by AML
from gravitational radiation only. In the follow-
ing, I shall try to explain step by step how the
gap arises in the framework of this hypothesis.

First of all, it is important to note that the
evolution of CVs with a MS donor driven by
AML leads from longer to shorter orbital peri-
ods. MS donor stars with a mass . 1M� have a
convective envelope and a radiative core. With

decreasing mass, i.e. Porb, the mass of the ra-
diative core shrinks until at a particular mass
M2,conv, i.e. orbital period Porb = Pu, the donor
becomes fully convective. According to the
above hypothesis, at this point the AML rate
drops from a high value, which is mainly due
to “magnetic braking”, to a small value due to
graviational radiation only.

If “magnetic braking” is sufficiently strong,
then for periods > Pu mass loss from the donor
occurs on a timescale much shorter than its
thermal time scale. As a result, the donor is
significantly driven out of thermal equilibrium
and, therefore, oversized compared to its ther-
mal equilibrium radius, i.e. R2(Porb > Pu) >
R2,e, and the faster the mass loss, the larger
the difference R2 − R2,e. Suppose now that the
driving AML rate drops by a large factor on a
short time scale. What will happen? The donor
will detach from its Roche lobe because ini-
tially it will continue losing mass and shrink
at the same rate as before, while its Roche ra-
dius, because of the reduced AML rate, will
shrink much more slowly. So mass transfer
stops and the star, being oversized because of
previous high mass loss, but now without mass
loss contracts towards its thermal equilibrium
radius R2,e, and that on its thermal time scale,
which is initially shorter than the time scale
on which its Roche radius shrinks. Mass trans-
fer can only resume when the shrinking Roche
radius reaches the stellar radius, i.e. the lat-
est when R2,R = R2,e. Once mass transfer re-
sumes the binary’s orbital period is Pl < Pu.
In other words: the binary has crossed the pe-
riod range Pl 6 Porb 6 Pu as a detached sys-
tem. And because of lacking accretion lumi-
nosity, such systems are intrinsically very faint,
fainter even than pre-CVs, and, therefore, vir-
tually unobservable. A gap in the period dis-
tribution can thus arise if a) a sudden drop
of the AML rate causes CVs to detach, b) if
that happens to most of the CVs evolving from
Porb > Pu → Porb < Pu, and if c) the values of
Pu and Pl are practically the same for all sys-
tems going through a detached phase.

So far, I have not yet addressed the ques-
tion why the AML rate should drop by a
large factor, and also on a sufficiently short
time scale. The idea behind this proposition
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is that effective amplification of magnetic flux
via a dynamo and thus efficient AML loss
via “magnetic braking” is strongly tied to
the presence of a convective envelope and
a radiative core in the donor star (see e.g.
Spruit & Ritter 1983). Accordingly, it is pro-
posed that AML via “magnetic braking” de-
creases rapidly when, as a consequence of on-
going mass loss, the donor eventually becomes
fully convective. The questions of whether that
really happens and whether AML via “mag-
netic braking” stops completely or only par-
tially when the donor becomes fully convec-
tive have remained somewhat controversial to
this day. Qualitative theoretical arguments in
favour of the above proposition have, however,
been presented by Taam & Spruit (1989).

In order for the disrupted magnetic brak-
ing proposition to work quantitatively, the fol-
lowing requirements must be met: AML above
the gap must drive mass transfer at a level of
−Ṁ2 ∼ 10−9M�yr−1. As a result, the donor be-
comes fully convective when Mconv ∼ 0.2M�
and Pu ∼ 3h. At that moment, as a consequence
of previous high mass loss, the stellar radius
is larger by about 30% than in thermal equi-
librium. With the disappearance of the AML
from “magnetic braking” the AML loss rate
drops by a factor of ∼ 10−20 to essentially the
value due to gravitational radiation alone. After
the detached phase which lasts ∼ 109 yr mass
transfer resumes with M2 = Mconv ∼ 0.2M�,
R2 = R2,e ∼ 0.2R� and Porb = Pl ∼ 2h at a
level of −Ṁ2 ∼ 5 10−11M�yr−1. Explaining the
gap as a collective phenomenon of CV evolu-
tion requires furthermore that the majority of
the donor stars are all of the same type, i.e.
MS stars, and that AML via “magnetic brak-
ing” yields similar mass transfer rates in dif-
ferent systems at the same orbital period. This
guarantees that Pu and Pl are more or less the
same for all systems, and thus the coherence of
the phenomenon.

The fact that the period range of the gap
is not empty already indicates that not all CVs
follow the above-described evolution strictly.
There are several reasons why there may be
CVs in the gap. The most important ones
are: 1) a donor mass such that at the end of
the detached pre-CV evolution the orbital pe-

riod is 2h . Porb . 3h (e.g. Kolb 1993;
Davis et al. 2008); 2) a donor star which ini-
tially was close to the terminal age MS (see
e.g. Ritter 1994), or which is the artificially
evolved remnant of earlier thermal time scale
mass transfer (Schenker & King 2002); 3) re-
duced “magnetic braking” because of the pres-
ence of a strongly magnetized WD (for details
see Li, Wu & Wickramasinghe 1994).

At the end of CV evolution the donor
star is a very faint brown dwarf. The WD,
in turn, with an effective temperature of typi-
cally < 104K is also very faint. And because
the mass transfer rate resulting from gravi-
tational radiation is very small as well, i.e.
−Ṁ2 . 10−11M�yr−1, so is the resulting ac-
cretion luminosity. Thus, such CVs are ex-
tremely faint and inconspicuous objects, and
correspondingly difficult to detect. And though
intrinsically about 90% of all CVs are in this
late phase (Kolb 1993), so far only one con-
vincing candidate far from the period mini-
mum is known (Littlefair et al. 2006). The CV
graveyard, as this evolutionary branch is some-
times referred to, is thus largely hidden from
our view.
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